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Abstract 

Diversity and Rate of Infection of Ericoid Mycorrhizal Fungi that Colonize Rhododendron 

maximum along an Elevational Gradient and Their Potential to Degrade Poly-aromatic 

Hydrocarbons Using Lignin Degrading Enzymes 

Daniel Chase Parker 
B.S., Appalachian State University 
M.S., Appalachian State University 

Chairperson: John Walker 

            Elevational differences in moisture, temperature, and edaphic conditions in 

mountainous areas may drive changes in the diversity and composition of fungi associated 

with the roots of plants.  We explored these relationships with Rhododendron maximum, an 

endemic shrub species found at all elevations in the Southern Appalachians.  This study 

focuses on the dynamics of ericoid mycorrhizal (ErM) fungal colonization levels and diversity 

in R. maximum roots along elevational gradients in the southern Appalachian 

Mountains.  First we hypothesized that overall ErM colonization levels in fine roots would 

increase with an increase in elevation due to an increased need for nutrient acquisition by 

the fungal symbionts for the plant.  We also hypothesized that community composition of 

the fungi would change along an elevation gradient because some fungi are likely to be 

better adapted to potentially more xeric and nutrient poor conditions on the tops of 

mountains or other associated factors.  Our last hypothesis was that ErM species at higher 
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elevations will have an increased ability to degrade lignin and make additional organic 

nitrogen sources in the soil available to the plant.  To address this question we sampled 

roots and soils from three iso-elevational transects from high to low elevations at two 

locations.  Root associated fungi were cultured and the DNA amplified from these cultures 

was typed by restriction fragment length polymorphism (RFLP) analysis of the ITS regions.  

Integrity of the RFLP types was confirmed by sequencing multiple representatives from each 

group.  Root colonization was quantified by counting mycorrhizal hyphae at random 

locations within the root using light microscopy.  Colonization was shown to increase at 

both sites at higher elevations.  Differences in edaphic properties were observed across the 

elevational gradient, and these changes coincided with changes in the fungal community 

structure.  Changes in abundance, frequency and species composition of the fungal 

communities tracked elevational differences at the two locations tested in this 

research.  Differences in species composition at Unaka Mountain were clearer, showing 

separation of fungal communities by elevation.  The communities on Hawksbill Mountain 

were not as distinct at each elevation, possibly because of a valley effect causing cold 

temperatures to settle in the gorge which can change microbial metabolism.  Lignin 

degrading capacity was found in approximately half of the fungal taxa but was not linked to 

elevational changes in fungal community composition.  Future directions for this research 

include greater sampling of the fungal communities at additional sites, experimental 

approaches to explore the relationships between edaphic factors and community 

composition, and greater characterization of the lignin degrading ability of the fungi. 
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Foreword 

 The research detailed in this thesis will be submitted to Mycologia, a peer reviewed 

journal owned and published by the Mycological Society of America.  The thesis has been 

prepared according to the style guide for the journal. 
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INTRODUCTION 

 

Ericoid Mycorrhizae 

 Mycorrhizal fungi are a group of diverse soil organisms that associate with nearly all 

plants, aiding in the uptake of water and nutrients for the host plant in exchange for 

photosynthetically derived sugars (Martino et al. 2007). There are different types of 

mycorrhizal associations identified by the type of connection the fungus makes with its host 

plant.  One association of particular interest in the Southern Appalachians Mountains is 

ericoid mycorrhizae (ErM).  These fungi associate with plants in the family Ericaceae 

(Martino et al. 2007).  In ErM associations the fungi typically have spiraled hyphae that are 

located intracellularly in the cortical cells found in the fine “hair” roots of the host plant 

(Martino et al. 2007).  Ericaceous plants include Rhododendron, Vaccinum, and other plants 

that are commonly found in areas of poor nutrient availability and low pH, conditions which 

are often due to low temperatures and slow decomposition rates (Bougoure and Cairney 

2005).   

Rhododendron maximum 

Rhododendron maximum is a naturally occurring understory shrub in the southern 

Appalachians that has become nearly ubiquitous in the mountains.  A nutrient feedback 

loop between R. maximum and ErM fungi exists, which is a potential driver for increased 
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abundance of rhododendron thickets.  Rhododendron maximum plants are evergreen with 

tannin and lignin rich foliage, which makes their litter difficult to break down.  The ability of 

ErM fungi to decompose lignin allows them to reclaim the nutrients (particularly N) locked 

up in the leaf matter and to avoid competition from other mycorrhizal fungi in the soil.  The 

reclaimed nutrients are then transferred to the host plant in exchange for carbohydrates.  

More nutrients are thus recouped by the plant which facilitates higher survival and success 

of the host plant (Wurzburger and Hendrick 2009).  However, the ability of ErM fungi to 

degrade polyaromatic hydrocarbons (PAHs) such as lignin has not been characterized across 

the diversity of fungi associated in this relationship. 

 The range of R. maximum extends from Nova Scotia to Georgia with populations 

found as far west as southern Ontario, Ohio, and Kentucky (Munns 1938, Anderson 2008).  

To the east, a population has been found in the coastal plain near Fredericksburg, Virginia 

(Iltis 1956).  However, the main range is continuous in the Appalachian Mountains from 

southern Vermont to northern Georgia (Munns 1938, Anderson 2008)and  at elevations 

ranging from sea level (Iltis 1956, Anderson 2008)  to 1800m (Anderson 2008).   

Rhododendron maximum is generally more abundant in cool, moist areas whereas  

elevation does not seem to have a significant impact on its distribution (Parker 2004, 

Anderson 2008, Vose 2012).  They are most dominant on north facing slopes under a thick 

overstory canopy, but can also be found on south facing slopes as well as on eastern and 

western facing slopes.  Southern slopes and mountain ridges are usually drier and the 

understories are often dominated by more xeric adapted species such as Kalmia latifolia. 
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 Historically, the loss of chestnut trees, fire suppression, and extensive logging 

practices created three important disturbance events that caused drastic changes in the 

community structure of southern Appalachian forest.  One change of great concern for 

forest management during the recovery of these forests was the spread of R. maximum.  

Rhododendron maximum is a native ericoid shrub that previously grew mainly in riparian 

zones in the Appalachian forests (Van Lear et al. 2002).  After the aforementioned 

disturbances in the early 1900’s R. maximum become a dominant understory cover at all 

elevations (Dobbs and Parker 2004).   

Rhododendron maximum has a shallow root base that is very susceptible to forest 

fires.  Forest fires were an important control keeping R. maximum from spreading into new 

areas (Dobbs and Parker 2004, Van Lear et al. 2002).  The demise of Castanea dentata and 

logging practices opened up areas for R. maximum to spread (Anagnostakis 1987; Van Lear 

et al. 2002).  Unlike forest fires, the chestnut blight and logging opens up canopy gaps 

without an immediate flux of nutrients.  This allowed R. maximum to overcome the normal 

seral species.  Studies have shown that the spread of R. maximum coincides with these 

disturbance events (Elliott and Vose 2012), however, R. maximum is still most dominant 

around riparian zones and in moist environments.  Increased distribution is most abundant 

on north facing slopes where the temperature and direct sunlight is low (Plocher 1987).   

Tree seedling reproduction is affected by R. maximum (Lei et al. 2002).  It has been 

shown that seeds of canopy trees will reach the forest floor within a R. maximum thicket, 

but seedling mortality increases five-fold over that of seedlings that land outside of a 
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thicket.  Furthermore, although Quercus and Prunus survivors in R. maximum thickets grew 

taller than saplings not in thickets, overall the seedlings had fewer leaves, less leaf area, and 

less leaf and stem mass (Lei et al. 2002).  Sporophore abundance and diversity of 

ectomycorrhizal fungi, which associate with canopy trees but not ericoid shrubs, was found 

to be unaffected inside R. maximum thickets (Walker et al. 2002) and no differences were 

observed in fungal communities sampled by direct DNA extractions from colonized root tips 

(Walker et al. 2005).  However, colonization levels of the seedlings were lower in the 

thickets (Walker et al. 1999). 

In addition to the reduced colonization by these mutualistic fungi, various other 

factors are thought to be involved with the observed seedling mortality.  Rhododendron 

maximum forms dense thickets and has broad evergreen leaves that shade out seedlings 

underneath (Lei et al. 2002).  Nutrient availability is also lower within the thickets. Taken 

together, these results show that both competition above and belowground likely 

contribute to the inhibition of canopy trees beneath R. maximum thickets (Nilsen et al. 

2001).   

Ericoid Mycorrhizal Fungi 

 The effects of elevation on the diversity of ErM associations in eastern temperate 

forests have not been examined.  However, previous research by Walker et al. (2011) in 

cold, Alaskan heathland, found that out of 303 cultures sampled,  148 were found to fit into 

six clades within the Helotiales, a large Ascomycete order containing many common ericoid 

symbionts.  Interestingly, five of the cultures had blast affinities for Irpex lacteus, a polypore 

in the family Basidiomycota that is known more for its saprobic ecological niche.  Members 



  5 

 

of the Sebacinales, a group of Basidiomycetous mycorrhizal species which form a wide 

variety of different types of mycorrhizal associations with various hosts (Walker et al. 2011), 

were also seen in the Arctic in some of the direct root extractions.  Sebacinales comprises a 

group of fungi that are commonly seen in direct extractions of ErM but are not culturable.  

Other researchers have sampled community structure of ErM with Vaccinium 

membranaceum along an elevation gradient in the western Canadian mountains from 

alpine zones to lower elevations.  They found two dominant taxa: the first, Rhizocyphus 

ericae, showed an affinity for high elevations in contrast with Phialocephala fortinii, which 

was abundant only at the low elevations (Gorzelek et al. 2012).   

Edaphic Changes with Elevation 

When moist air reaches the windward side of mountains it is forced up higher in the 

atmosphere causing it to cool and condense, a term known as orographic lift.  Orographic 

lift results in precipitation on the windward sides and tops of mountains, while on the 

leeward side, air sinks and the compression caused by the increased atmospheric pressure 

causes it to heat up.  Since warm air can hold more moisture than cool air, this usually 

results in less precipitation on this side (Price 1986).      

In dry environments the adiabatic lapse rate is about 9oC/km but in the Appalachian 

Mountains where moisture is high the lapse rate is between 3-70C/km (Bolstad et al. 1998).  

The amount of heating that comes from the mountain depends on the area of the mountain 

and on the area of mountains it is in close proximity too.  A mountain of volcanic origin 

stands alone and will have a steeper cooling gradient compared to the Appalachian range 

with a lot more land area at the higher elevations (Price 1986).   
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During the day the temperature will increase but this heat will be lost quickly as 

soon as the sun sets in the higher elevations with less atmospheric pressure.  The same 

effect accounts for the loss of moisture at higher elevations.  Orographic lift causes more 

precipitation at higher elevations but the moisture is easily lost as the bulk of rain gravitates 

downhill and the remainder is quickly evaporated into the drier atmosphere at the higher 

elevations (Price 1986). 

Aspects of the mountains play an important role on the amount of solar radiation 

the landscape receives.  The Appalachian Mountains are in the northern hemisphere and 

the sun’s radiation comes from the south.  The southern slopes receive the bulk of the solar 

radiation and are heated to a greater extent than the northern slopes.  This also means the 

south facing slopes are more exposed to evaporation effects of solar heating and will be 

drier than the north facing slopes in the warmer months.   

Valleys between mountains can be sinks for cold air.  Cold air is denser than warm 

air. As air is cooled at higher elevations it will fall into the surrounding valleys and become 

trapped.  In some areas the air in the valley can be as cool as the air on top of the mountain.  

The warm air is displaced out of the valleys and is pushed up to higher elevations.  As the air 

rises further in elevation it will decrease in temperature.  The area of warmer air in the 

middle elevation is called the thermal belt.  The thermal belt is often utilized for agriculture 

(Price 1986). This belt of warm temperature may affect elevational distributions of ErM 

fungi in this study as it commonly occurs in the elevations being investigated.  
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Nitrogen Inputs Along Elevational Gradients in Southern Appalachian Mountains 

Nitrogen inputs come mostly from the process of deposition.  Deposition is where 

rain or fog from clouds deposit nitrogen on the tops of mountains.  Nitrogen has been seen 

as high as 18kg N/ha higher at high elevations than lower elevations due to deposition from 

rainfall amounts at higher elevations (Knoepp and Swank 1998).   Research on nitrogen 

deposition shows increased levels of inorganic nitrogen at high elevation spruce-fir sites 

(Shubzda et al. 1995, Pauley et al. 1996, Barker et al. 2002) .  However, in one of these 

studies there was a 30% decrease in nitrogen deposition from 1740 m in elevation to 1920 

m (Shubzda et al. 1995).   

 In areas where ericoid plants are found nitrogen is more prevalent in organic pools 

and inorganic N is not readily available (Walker et al. 2011).  Ericoid mycorrhizal fungal 

saprotrophic ability and the chemistry of R. maximum plant leaf litter support a closely 

coupled N cycle between Ericoid host plants and the soil in which they are located.  The 

tannin rich leaf matter from R. maximum plants promotes the retention of protein-tannin N 

in soil. This complexed N is largely only accessible to the saprotrophic ErM symbionts of the 

plants and is less available to the co-occurring ecto- and arbuscular mycorrhizal symbionts 

and their hosts (Wurzburger and Hendrick 2009).  A similar feedback loop was found in 

heathland soils where N was locked up in polyphenol tannic acids in the soil where ErM and 

not the co-occurring ECM fungi could gain access to it (Bending and Read 1996). 

 Ericoid mycorrhizal fungi are variably saprotrophic.  Their ability to degrade organic 

substrates gives them access to organic sources of nitrogen and other nutrients.  The ErM 

are likely utilizing lignin degrading enzymes in order to take up the bound organic N sources, 
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such as from ericoid plant litter.  Lignin degradation has not been well characterized in the 

literature for ErM fungi but is well understood in the white rot basidiomycetes.  White rot 

basidiomycetes use laccases and manganese peroxidases and are among the few organisms 

able to break down lignin and other organic aromatic structures like tannins (Chupungarset 

al. 2009).  Lignin is a complex structure composed of many aromatic rings and enzymes that 

attach to the polyaromatic rings break them apart.  These enzymes are also capable of 

breaking down a wide variety of poly-aromatic structures other than lignin (Muncnerova 

and Augustin 1994).  Lignin peroxidase is an example of a lignin degrading enzyme and is 

found in Phanerochaete chrysosporium (Wang et al. 2009).   

Goals of this Thesis 

 This study will focus on elevational differences in ErM diversity from the host plant 

R. maximum in the Southern Appalachian Mountains.  The decrease in soil quality and 

temperature with elevation would likely lead to a higher dependence of host plants on 

associations with their mycorrhizal symbionts.   

I tested three hypotheses in this study: (1) that overall ErM colonization levels in fine 

hair roots will increase with an increase in elevation due to an increased need for nutrient 

acquisition by the fungal symbionts for the plant; (2)that fungal diversity would change 

along an elevation gradient because of changes in habitat quality and quantity, and (3)that 

ErM species at higher elevations will have an increased ability to degrade lignin and release 

additional organic nitrogen sources into the soil.       
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MATERIALS AND METHODS 

 

Field Sites 

Rhododendron maximum roots were sampled on Hawksbill Mountain, Linville Gorge 

State Park, NC, and on Unaka Mountain, Unicoi County, TN during the first week of August 

2010 and 2011, respectively.  Linville Gorge and Unaka Mountain are each wilderness areas 

in the southern United States.  Despite extensive logging throughout the region during the 

past two centuries, Linville Gorge was never clear cut because the steep terrain made it 

unprofitable to extract lumber. The wilderness was purchased in 1952 with funds donated 

by John D.  Rockefeller and later designated as a wilderness area in 1964 through provisions 

of the Wilderness Act.  Unaka Mountain was logged up until the early 1900’s and was 

established as a wilderness area in 1986 (Frome 1994) .   

Three isoclinal transects were located at each site.  At Hawksbill Mountain transects 

were established at elevations of 746 m (N35o54’51.76”, W81o53’53.04”) at the bottom, 

899 m (N35o55’19.68”, W81o53’39.25”) in the middle, and at 1,141 m (N35o55’7.26”, 

W81o53’13.57”) at the top.  At Unaka Mountain the three transects were located at 

elevations of 708 m (N 36o10’20.0”, W82o17’39.6”), 1127 m (N36o8’7.3”, W82o16’28.4”), 

and 1,466 m (N36o8’3.7”, W82o18’35.9”).  All transects at both sites were on north facing 

slopes where R. maximum was more abundant.  Locality data were retrieved with a GPS 
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(Garmin Etrex, Garmin International Inc., Olathe Kansas).  Ten plants were selected along 

each transect by randomly placing points 4 m to 10 m apart, randomly choosing direction 

(above or below the transect), and then choosing the nearest R. maximum stem.   

Root Collection 

From each R. maximum plant three root samples were obtained by the following 

method: main roots were traced from the base of the shrub to the fine roots located near 

the distal ends of the roots, and approximately 500 cm of the fine roots were collected.  

There were three transects per site, 10 plants per transect and three samples per plant, for 

a total of 90 samples per site.  The fine root samples were transported to the lab in plastic 

ziplock bags, and three 1 cm segments of fine roots were cut and cultured from each 

sample within 24 hours, for a total of 270 root segments per site.  The root segments were 

cultured for the isolation of root endophyte and symbionts as described below.  Five 

additional 1 cm fine root segments per sample were stained, then stored in glycerol and 

refrigerated for quantification of root colonization. 

Staining / Light Microscopy / Root Tip Colonization Assay 

To quantify fungal colonization of the R. maximum roots the basic method described 

by McGonigle et al. (1990) was employed.  However, the original method was used to 

quantify arbuscular mycorrhizal colonization and had to be modified as described below to 

account for the structural differences found in ericoid mycorrhizae.  The 1 cm sections of 

roots described in the sampling section above were cleared by autoclaving at 121oC for 3 

min in 5% KOH.   The roots were then rinsed in water and acidified in 1% HCl for 24 hours.  

The endomycorrhizal and endophytic fungi in the roots were stained with acidic 
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glycerol/trypan blue for 3 min at 121oC.  After staining, root samples were kept refrigerated 

in glycerol and examined within 60 days.  Three of the five cleared and stained root sections 

from each plant was then quantified for colonization with an Olympus BX51 light 

microscope by the following method:  a 10 mm line with 10 randomly selected points was 

marked on a glass slide.  The root segment was mounted, under a coverslip in water, 

periclinal to the line.  At the 10 random points, anticlinal transects across the root segment 

were examined under 400 X magnification, and the number of internal hyphal elements 

that were encountered in the first 200 µm were counted.  The sum of three root segments 

per plant were totaled for 10 plants across each transects.  With three elevations per 

location there was a total of 30 points per location.   

Mycorrhizal Fungal Culturing 

Three 10 mm fine root sections from each of the three root samples per plant were 

washed in dH2O, surface sterilized in 30% H2O2 for 30 to 60 seconds, and placed on a single 

sterile culture plate.  The culture plates were plastic 15 mm Petri plates containing solid 

malt agar medium (18 g BactoTM Agar and 18 g BactoTM Malt extract dissolved in dH2O for 1 

L total volume).  After fungal cultures emerged from the fine root a small section from each 

colony was cut from the outer margin and transferred to a separate plate of malt agar to 

establish pure cultures.  All cultures were parafilmed to prevent desiccation and stored in 

large Tupperware containers with a lining of petroleum jelly around the edges to prevent 

insect infestation. 
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Sequencing and Restriction Fragment Length Polymorphism 

A combination of restriction fragment length polymorphism (RFLP) typing and 

sequencing of the internal transcribed spacer (ITS) nuclear rDNA was used to type the fungi 

in the cultures at approximately the species level and to quantify the abundance and 

frequency of each type.  All of the colonies were morphotyped according to their 

appearance prior to any molecular work to help organize the RFLP analysis.  Five mm 

sections of hyphae taken from the outer edge of the colonies were placed in 50 µL of cetyl 

trimethylammonium bromide (Ctab) and were agitated by freezing in liquid nitrogen and 

thawing two times in a dry block at 65oC.  The samples were further macerated by manually 

grinding the samples with a micro-pestle.  An additional 250 µL of Ctab was added for a 

total of 300 µL for each sample.  Then 300 µL of chloroform were pipetted into each sample 

and vortexed for 10 seconds.  The homogenized samples were centrifuged at 13,200 rpm 

for 10 min.  Two hundred µL of the top aqueous layer was removed and pipetted into a new 

tube along with 600 µL ice cold isopropanol and then homogenized and stored for 24 hours 

in the freezer. Each sample was then centrifuged for 15 min at 13,200 rpm and the aqueous 

layer was carefully poured off.  The precipitate was rinsed with 80% ice cold ethanol twice 

and all liquid was poured off.  The remaining pellet was dried for approximately 15 min in a 

vacufuge (Vacufugetm Eppendorf, Hamburg-Eppendorf, Germany) and re-suspended in 50 

µL sterile H2O.  The samples were then diluted by a factor of 1:50.   

Polymerase chain reaction (PCR) was utilized to amplify nuclear DNA spanning the 

ITSI and ITSII regions from the extractions with the primers ITS1 and ITS4 (Gardes and Bruns, 

1993) synthesized by Eurofins mwg Promega.  The PCR cycle parameters were as follows: 
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for the initialization step temperature was held at 95oC for 2 min, followed by 35 cycles of 

denaturation (30 sec, 95oC), annealing (45 sec, 50oC), and elongation (1 min, 72oC), and a  

final single elongation step at 72oC for 7 min.   

RFLP analysis was used to initially assess conspecificity of all morphotypes.  A double 

digest was performed for RFLP analysis with Alu1 and Hinf1 fast digest restriction enzymes 

and was carried out in 40 µL reactions.  This reaction consisted of 2 uL of each enzyme, 4 uL 

of buffer, and 12 uL of molecular grade water along with 20 uL of the PCR product.  

Digestions were incubated in a dry heat block at 65°C for 2 hours.  The digest was then 

dehydrated in a vacufuge for 30 min to concentrate the digest to half of the original volume.  

The product was then run out on a 1% agarose and 2% nusieve gel stained in ethidium 

bromide and visualized in ultraviolet light.  From each type determined by RFLP at least half 

of the cultures were sequenced (Eurofins mwg Promega).  All sequenced cultures were 

grouped together into contigs that represent one taxonomic group with 97% identity 

(Sequencher).  RFLP types for which all sequenced cultures were assigned to one contig 

were considered conspecific.  For RFLP types with members that were not assigned to a 

single contig, all of the cultures were sequenced and the RFLP type was not considered to 

be conspecific. 

Edaphic and Environmental Sampling 

Soil collected within a 1 m circumference around each R. maximum stem was pooled 

together for 0.5 L sample at 10 transect for soil analysis (30 aggregate samples per site).  

The samples were frozen prior to analysis.  Samples were amalgamated by drying, passing 

through a sieve (850 µm) and mixed together.  Approximately 240 mL of soil was sent to the 
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NC Cooperative Extension for estimation of humic matter (HM), weight per volume (WV), 

cation exchange (CE), base saturation (BS), acidity, pH, P, K, Ca, Mg, S, Mn, Zn, ZnAl, Cu, and 

Na.  For each sample an additional 25 mL was further ground and aliquots ranging between 

20 and 30 mg per sample were analyzed for percent carbon and nitrogen (Thermo Electron 

Flash EA1112 CN analyzer, RKI Instruments, Inc., Union City, California). 

Mn and Lignin Peroxidase Assay  

A representative culture for each isolate was used to test for lignin degradation 

ability.  A nutrient limited lignin modifying enzyme basal medium (LBM) with agar was used 

to grow fresh cultures (Pointing 1999).  Two indicators, azure blue and α-napathol, were 

used to identify the presence of peroxidase enzymes or lignase enzymes, respectively.  A 

copy of each of the isolate representatives was plated on LBM with azure blue both with 

and without Mn to be able to distinguish between Mn and lignin peroxidases.  A third 

culture was made with LBM and α-napathol.  If the fungal culture produced lignase, a green 

halo formed around the culture on the α-napathol plate as the lignase oxidized the 

indicator. Azure blue is degraded by peroxidase enzymes so if peroxidase enzymes were 

produced by the fungal isolate a clear decolorization zone was observed around the culture.  

Isolates on plates grown with azure blue but without Mn were not be able to produce Mn-

peroxidase, so any decolorization that occurred was the result of lignin peroxidase.  

Data Analysis 

 All soil characteristics and root colonization data were compared among and 

between sites (n = 10 plots per transect) using Analysis of Variance after checking for 

normality and equality of variances. The colonization sum of three root segments per plant 
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was totaled for 10 plants across each transects.    Spearman correlations were utilized to 

determine which soil parameters were correlated with each other.  Analyses of Variance 

and correlations were performed using Sigmaplot V.12 (Systat Software Inc., city, state).  

Significance for all statistical analyses was assumed with a p < 0.05.   

 Frequency and abundance of each taxon (ITS-type from the molecular analysis) were 

evaluated for all transects to uncover any changes in diversity over the elevational 

gradients.  Frequency was defined as the number of plants from which that taxon was 

recovered.  Abundance was the number of cultures obtained for each taxon per plant.  I 

used indicator analysis (Indicator Analysis: PC-ORD version 6.0, MjM Software 2011) to find 

individual species that were suggestive of any of the three elevations at each location.  

Shannon’s diversity index, richness, and evenness were calculated for each plot and 

transect (Row and Column Summary: PC-ORD version 6.0, MjM Software 2011) and then 

compared between transects and sites using a two-way Analysis of Variance. 

 We used Principle Component Analyses (PCA: PC-ORD version 6.0, MjM Software 

2011) to explore relationships among fungal symbiont diversity on R. maximum across the 

elevational gradients at both locations by looking for grouping within the three elevational 

transects.  We used a centered variance/covariance.  Significant axes were determined by 

having an eigenvalue greater than the broken-stick eigenvalue for that axis.  To further 

explore relationships among fungal symbiont diversity we used Canonical Correlation 

Analysis (CCA: PC-ORD version 6.0, MjM Software 2011) to assess correlation of differences 

in diversity with edaphic properties across the same gradient by plot.  The rows and 

columns scores were standardized by Hill’s (1979) method while ordination scores were 
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optimized by variable.  Plot scores for graphing were derived from the variable as well.  The 

null hypothesis for CCA is that there are no relationships between matrices.  The percent of 

variance explained was calculated by dividing the eigenvalue for each axis by the total 

variance in the species data. 
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Results 

 

Edaphic Properties and Colonization: Differences in Elevations and Locations 

 Edaphic properties differed noticeably among elevations and locations (Table 1 and 

2).  At Unaka Mountain humic matter, cation exchange capacity, P, Mg, Zn, Al, N and Ca all 

significantly increased with elevation.  At Hawksbill Mountain humic matter was highest at 

the middle elevation and lowest at the lowest elevation while the high elevation was not 

significantly different then either other site.  Cation exchange capacity, Mg, Zn, Al, N, and Ca 

did not change among all three elevations at Hawksbill Mountain.  Phosphorus increased 

significantly with increased elevation at both locations.  The C to N ratio was significantly 

lower at the high elevation on Hawksbill Mountain and did not change at any elevation on 

Unaka Mountain.  There was no consistent elevational change in Cu, Mn, S, or K at either 

location.  Hydrogen ion concentration decreased with an increase in elevation on Unaka 

Mountain but stayed constant on Hawksbill Mountain.   
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 Shannon’s index, richness, and eveness were not significantly different at any 

elevation on Hawksbill Mountain (p = 0.093, 0.659, and 0.131 respectively). Shannon’s 

index, richness, and eveness were not significantly different at any elevation on Unaka 

Mountain (p = 0.403, 0.0.516, and 0.271 respectively). The frequency of hyphal elements in 

the roots increased with elevation at both Unaka and Hawksbill Mountain (Figure 1).  The 

frequency more than doubled from the low elevation to the middle elevation and was more 

than 5 X higher at the high elevation at the Unaka Mountain site, and 2.4 X greater than the 

low elevation site at Hawksbill Mountain. 
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Figure 1: Colonization averages by transect at Unaka and Hawksbill Mountains.  
Colonization represents average of 10 plants per elevation.  Significant changes are 
indicated by different letters above bar. 
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Identification of Taxa  

 Among three transects on Hawksbill Mountain 166 cultures were successfully 

grouped into 26 taxa with 97% identity (Table 3).  Two taxa, Cryptosporiopsis diversispora 

and C.  ericae1, made up 57% of all cultures found at this location.  Eight taxa had between 

3 to 8 representative cultures, and 16 taxa were considered rare with less than two cultures 

found for each.  All of the cultures fell into 7 different orders.  Sixteen of the taxa were 

matched with species in the order Helotiales.  Four taxa were found to be Basidiomycetes in 

the order Agaricales.   

 Among three transects on Unaka Mountain 191 cultures were successfully grouped 

into 17 taxa with 97% identity (Table 4).  The two most dominant taxa were Dermea acerina 

and Cryptosporiopsis diversipora making up 30% of the cultures.  Unaka Mountain is 

represented with greater evenness than the cultures identified at Hawksbill Mountain.  

Eight taxa have between 2 to 5 cultures and the remaining 7 taxa had between 11 to 19 

cultures.  All taxa were grouped into 5 different Orders.  Helotiales was the most abundant 

Order with 11 taxa. 
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Frequency and Abundance of Cultures 

 At Hawksbill Mountain two species made up 57% of the cultures from all elevations 

(Table 3).  Cryptosporiopsis ericae1 had the highest frequency of all cultures (Figure 2) and 

was present at all elevations.  It showed up in 8 of 10 plots at the low elevation, and 5 of 10 

plots at both the middle and high elevations.  Cryptosporiopsis diversispora had the second 

highest frequency of all cultures collected on Hawksbill Mountain.  It was present at 9 of 10 

plots at the high elevation but only 4 of 10 plots at the middle and low elevations.  The low 

elevation had a higher frequency of rare species compared to the high elevation.   

 At Unaka Mountain Dermea acerina had the highest frequency over all transects.  It 

was found in all 10 plots at the high elevation, 3 of 10 plots at the middle elevation, but only 

in one plot at the low elevation (Figure 2).  Neonectria radicicola had the second highest 

frequency and was present at both the high and low elevation transects in 6 of 10 plots but 

only in 1 of the 10 plots at the middle elevation.  Cryptosporiopsis diversispora frequency 

was found to decrease with elevation at Unaka, which is the opposite of what was seen at 

Hawksbill Mountain.  It was present in 6 of 10 plots in the low elevation, 4 of 10 plots on the 

middle elevation, but only in 2 of 10 plots at the high elevation.  Again, low elevation sites 

had a higher frequency of rare species. 
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Figure 1: Frequency of each taxon for low, middle, and high elevations at Hawksbill 
Mountain and Unaka Mountain.  X axis is arranged by highest overall frequency (left) to 
lowest overall frequency (right) for all three elevations.  Taxa are abbreviated by using only 
the first three letters of genus and specific epithet.   
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Hawksbill Middle Elevation
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Indicator Analysis 

 Hawksbill Mountain exhibited one significant indicator species among the three sites 

only at the low elevation (Table 5).  Phialocephala fortinii had an indicator value of 0.555 for 

the low elevation site (p = 0.0188).  Cryptosporiopsis diversipora had a significant indicator 

value of 0.476 for the high elevation site (p = 0.0338).  Myxocephala albida showed an 

affinity towards the middle elevation with an indicator value of 0.471 (p = 0.0858) but this 

was not significant. 

 Unaka Mountain exhibited 5 significant indicator species among the three different 

elevations sampled (Table 6).  Phialocephala turiciensis had an indicator value of 0.05 for 

the low elevation site (p = 0.0248).  Dermea viburni had an indicator value of 0.610 for the 

middle elevation site (p = 0.0054).  Three species, Dermea acerina, Phialocephala 

sphaeroides, and Pezicula cinnamomea had indicator values of 0.745, 0.525, and 0.689 

respectively for the high elevation site (p = 0.0002, p = 0.0232, p = 0.0016 respectively).   
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Table 5: Taxon maximum identity to an elevation at Hawksbill Mountain.  Max group gives 
the elevation the taxon is most associated with.  The observed indicator value gives a 
numerical value for how well it represents the maximum group as an indicator species, 
where the closer it is to one the greater the indicator value.  Significant indicator values 
represented with a p value of less than 0.05 are shown in bold. 

 
      

Species Max Group Observed Indicator value (IV) p 
Acephala 
macrosclerotiorum Low 0.37 0.31 
Coleophoma eucalyptorum Middle 0.26 1.00 
Cryptosporiopsis 
californiae Low 0.09 1.00 
Cryptosporiopsis 
diversipora High 0.47 0.03 
Cryptosporiopsis ericae1 Low 0.28 0.34 
Cryptosporiopsis ericae2 Low 0.34 0.29 
Cryptosporiopsis radicicola Middle 0.37 0.30 
Dermea acerina Low 0.09 1.00 
Dermea viburni Middle 0.09 1.00 
Hyphodiscus 
hymeniophilus Low 0.37 0.31 
Lobaria macaronesica Low 0.09 1.00 
Meliniomyces variabilis High 0.34 0.28 
Mollisia cinerea Middle 0.26 1.00 
Mycena vitilis High 0.26 1.00 
Myxocephala albida Middle 0.47 0.08 
Oidiodendron maius High 0.26 1.00 
Pezicula carpinea Low 0.14 1.00 
Pezicula cinnamomea Middle 0.25 0.57 
Pezicula sp Low 0.09 1.00 
Pezicula sporulosa Low 0.09 1.00 
Phialocephala fortinii Low 0.55 0.01 
Phialocephala scopiformis Low 0.18 0.84 
Russulaceae sp1 Low 0.38 0.30 
Russulaceae sp2 Low 0.38 0.31 
Talaromyces striatus Low 0.26 1.00 
Tricholoma portentosum Low 0.38 0.31 
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Table 6: Taxon maximum identity to an elevation at Unaka Mountain.  Max group gives the 
elevation the taxon is most associated with.  The observed indicator value gives a numerical 
value for how well it represents the maximum group as an indicator species, where the 
closer it is to one the greater the indicator value.  Significant indicator values represented 
with a p value of less than 0.05 are shown in bold. 

 
      

Species Max Group Observed Indicator value (IV) p 
Colpoma quercinum Low 0.40 0.08 
Cryptosporiopsis 
diversipora Low 0.35 0.13 
Cryptosporiopsis ericae High 0.08 1.00 
Dermea acerina High 0.74 >0.01 
Dermea viburni Middle 0.61 >0.01 
Hypocrea minutispora Middle 0.37 0.31 
Lecythophora mutabilis Middle 0.37 0.30 
Leptodontidium sp. Middle 0.08 1.00 
Mollisia cinerea Low 0.26 0.29 
Neonectria radicicola Low 0.30 0.22 
Pezicula cinnamomea High 0.68 >0.01 
Phialocephala fortinii Low 0.25 0.30 
Phialocephala sphaeroides High 0.52 0.02 
Phialocephala turiciensis Low 0.50 0.02 
Phialocephala virens Middle 0.44 0.09 
Xylaria frustulosa Middle 0.05 1.00 
Xylaria laevis Low 0.40 0.09 
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Principle Components Analysis 

  The first two axes defined by PCA explained 75% of the variation between 26 taxa 

found on Hawksbill Mountain.  The first axis separated all three elevations linearly (Figure 

3).  The middle elevation was overlapped by both low and high elevations.  The low 

elevation was also slightly overlapped by the high elevation.  Phosphorus, pH, Zn, Al, and 

colonization vectors are increasing parallel to axis one along with an increase in elevation.   

 The first two axes defined by PCA explained 52% of the variation between 17 taxa 

found on Unaka Mountain.  All three elevations were separated across the second axis 

(Figure 4).  The middle elevation is between the low and high elevation groupings with 

overlap in each and is predominantly on the positive values for axis one.  The low elevation 

group and the high elevation group do not overlap.  Humic matter and colonization is 

positively correlated to axis two and slightly negatively correlated to axis one.   
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Figure 2: Principal components analysis (PCA) of plots at Hawksbill Mountain.  Axes were 
defined by abundance & frequency values of taxa at each plot.  All 10 plots at each 
elevation (low, middle, and high) were outlined to show how well each transect grouped 
together and their spatial composition to each other.  Edaphic properties were plotted in a 
second matrix and values were overlain over the distance measures made by the main 
matrix. 



  31 

 

 

Figure 3: Principal components analysis (PCA) of plots at Unaka Mountain.  Axes were 
defined by abundance & frequency values of taxa at each plot.  All 10 plots at each 
elevation (low, middle, and high) were outlined to show how well each transect grouped 
together and their spatial composition to each other. Edaphic properties were plotted in a 
second matrix and values were overlaid over the distance measures made by the main 
matrix. 
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Canonical Correlation Analysis 

 Three axes were defined for Hawksbill Mountain that explained 25% of the variation 

with 26 taxa and 17 environmental factors.  Acephala macrosclerotiorum, Hyphodiscus 

hymeniophilus, Talaromyces striatus, Phialocephala fortinii, Tricholoma portentosum, 

Dermea acerina, Pezicula sp1.  Cryptosporiopsis ericae, Russulaceae sp1, and Pezicula 

carpinea are all associated with the low elevation and their points are all within the low 

elevation boundary (Figure 5).  Phialocephala scopiformis, Phialocephala sporulosa, Lobaria 

macaronesica, Russulaceae sp 2 and Cyptosporiopsis californiae are also associated with the 

low elevation but are not located within the low elevation grouping.  None of these outliers 

are significant indicator species of the low elevation.  Coleophoma eucalyptorum, 

Cryptosporiopsis radicicola, Mollisis cinerea, Myxocephala albida, and Pezicula cinnamomea 

are associated with the middle elevation and are located within the middle elevation 

boundary.  Dermea viburni is also loosely associated with the middle elevation but is not a 

significant indicator and falls outside of the middle elevation boundary.  Meliniomyces 

variabilis, Mycena vitilis, and Oidiodendron maius are associated with the high elevation site 

and are located within or right outside the outer edge of the high elevation boundary.  All 

three groupings slightly overlap each other. The middle elevation grouping overlaps about a 

third of the group created for the high elevation.  The low elevation group is mainly 

encompassed in the quandrant with positive axis 1 values and negative axis 2 values.  The 

middle elevation group is largely encompassed in the quadrant with positive axis 1 and 2 

values.  The high elevation site is largely encompassed in the quadrant with negative axis 1 

values and positive axis 2 values.  The three elevations are separated linearly on the first 
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axis and axis 2 further separates the low elevation group into a distinct grouping.  

Colonization, P, Mn, Hydrogen ion concentration, and Zn, Al are significant negative vectors 

along the first axis.  C/N ratio is a significant vector positive on the first axis. 

   Canonical correspondence analysis defined 3 axes that explained 34% of the 

variation with 17 taxa and 16 environmental variables on Unaka Mountain.  

Cryptosporiopsis diversispora, Phialocephala fortinii, Colpoma quercinum, Mollisia cinerea, 

Neonectria radicicola, Phialocephala turiciensis, and Xylaria laevis are all associated with the 

low elevation site (Figure 6).  All of these species share negative scores less than -0.751 on 

the first axis except for N.  radicicola.  They also all have positive scores on the second axis.  

Cryptosporiopsis ericae, Dermea viburni, Leptodontidium sp., Lecythophora mutabilis, 

Hypocrea minutispora, Phialocephala virens, and Xylaria frustulosa are all associated with 

the middle elevation and all have values on the first axis between -1.166 and 0.167.  They all 

have negative values on the second axis.  Dermea acerina, Phialocephala sphaeroides, and 

Pezicula cinnamomea are all associated with the high elevation site and all have positive 

scores on the first axis greater than 1.1 and scores between -0.22 and 0.79 on axis 2.  The 

high elevation group only slightly overlaps with the middle elevation group but all three 

form distinctive groups mainly separated across the first axis and the middle elevation 

further separated across the second axis.  Humic matter, P, colonization and cation 

exchange capacity all have significant positive vectors on axis 1.   
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Figure 4: Canonical correlation analysis (CCA) of plots at Hawksbill Mountain.  Axes were 
defined by an analysis constrained by two matrices, the first containing abundance values of 
taxa by plot and the second containing edaphic values by plot.  All 10 plots at each elevation 
(low, middle, and high) were outlined to show how well transects at each elevation grouped 
together. Taxa were overlaid on the same axes to show their correlation to the plots or 
elevational groups. 

CCA 
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Figure 5: Canonical correlation analysis (CCA) of plots at Hawksbill Mountain.  Axes were 
defined by an analysis constrained by two matrices, the first containing abundance values of 
taxa by plot and the second containing edaphic values by plot.  All 10 plots at each elevation 
(low, middle, and high) were outlined to show how well the transect at each elevation 
grouped together. Taxa were overlaid on the same axes to show their correlation to the 
plots or elevational groups. 
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Lignin Assay 

 The following colorimetric assays give a qualitative identification of lignin degrading 

enzymes (Table 6).  Three enzymes systems were used to degrade lignin and tested here.  

Three positive results (Acephal macrosclorotorum, Phialocephala fortini, and Xylaria laevis) 

were found in the α-napathol assay but the other two assays were also positive for those 

taxa.  Cryptosporiopsis ericae, Lecythophora mutabilus, Mollisia cinarea, Myxocephala 

albida, and Phialocephala scopiformis were only positive for lignin peroxidase and no other 

enzymatic system.  No significant differences were found for lignin degrading fungal taxa at 

any elevation (p = 0.134, 0.093 Hawksbill, Unaka Mountain, respectively) 
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Table 6: Lignin Assay.  Colorimetric assays were performed for 34 fungal cultures on three 
different medias.  A (+) identifies a positive result for each assay and a (-) identifies a 
negative result.   

  
α-
Napathol 

Azure B w/ 
Mn 

Azure B w/out 
Mn 

Acephala 
macrosclerotorum + + + 
Coleophoma eucalyptorum - - - 
Colphoma quercinum - - - 
Cryptosporiopsis 
diversispora - + - 
Cryptosporiopsis ericae - - + 
Dermea acerina - - - 
Cryptosporiopsis radicicola - - - 
Dermea verburni - - - 
Hyphodiscus hymeniophilus - + + 
Hypocrea minutispora - - - 
Cryptosporiopsis californiae - + + 
Russulaceae sp 2 - - - 
Lecythophora mutabilus - - + 
Leptodontidium sp. - + + 
Lobaria mararonesica - - - 
Meliniomyces variabilis - - - 
Mollisia cinerea - - + 
Pezicula sporulosa - + + 
Russulaceae sp 1 - - - 
Mycena vitilis - - - 
Myxocephala albida - - + 
Neonectria radicicola - + + 
Oidiodendron maius - - - 
Pezicula carpinea - + + 
Pezicula cinnamonea - + + 
Phialocephala fortini + + + 
Phialocephala scopiformis - - + 
Phialocephala sphaeroides - - - 
Phialocephala turiciensis - + + 
Phialocephala virens - + - 
Talaromyces striatus - - - 
Tricholoma portentosum - + + 
Xylaria frustulosa - - - 
Xylaria laevis + + + 
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 Discussion and Conclusion  

 

In the past century R. maximum has spread extensively in the Appalachian mountain 

range. It once used to be predominantly a riparian zone species, but now can be found in a 

wide diversity of habitats and at all elevations.  We expected R. maximum might have 

different mycorrhizal partners to assist in its ability to dominate the subcanopy in many 

areas over a broad elevational range in the Appalachian Mountains.  Our results strongly 

indicate that R. maximum can in fact associate with different ErM assemblages that form a 

graded series across different elevations, and that it has higher colonization levels and very 

likely higher reliance on ErM fungi at higher elevations. We know that elevation can have 

large impacts on climate and edaphic properties over a short distance.  Moreover, we 

expected to find greater needs for mycorrhizae where nutrients are not as readily available, 

which could be indicated by the density of root infection by mycorrhizal fungi. 

Hawksbill and Unaka Mountain showed generally similar patterns with edaphic 

changes and ErM fungal communities.  These changes along an elevational gradient might 

be explained by lower temperatures at higher elevations as indicated by the adiabatic lapse 

rate..  The dry adiabatic lapse rate is 9.8 oC/km, but in the southern Appalachians the 

adiabatic lapse rate is lower due to high moisture in the atmosphere (7 oC/KM).  The 

decrease in temperature causes slower decomposition rates and changes edaphic 
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properties along an elevational gradient (Bolstad et al. 1998).  We saw greater changes at 

the Unaka Mountain location.  This is likely due to a valley effect at Hawksbill Mountain 

where the denser cold air drains into the valley and is trapped.  This thermal belt effect 

causes colder air at the low elevation transect similar to that of the high elevation transect 

in contrast to Unaka Mountain which is located along a solitary mountain ridge where cold 

air is not trapped at the low elevation. Soil temperature and moisture measurements would 

be a valuable component for future investigations.  

Most mountains will have limiting temperature and moisture at higher elevations 

(Shanks 1956, Price 1986, Knoepp and Swank 1998).  Higher elevations receive an increased 

amount of rain due to orographic projection but the soil is porous and does not retain water 

as well as organic soils found at the lower elevations.  At the highest elevations physical 

weathering becomes the dominant process for soil formation due to decreased micro fauna 

and decreased biological activity (Price 1986, Knoepp and Swank 1998).  Litter fall is usually 

less at the higher elevations than lower elevations as well (Shanks 1956).  Soil organic 

matter builds up at the higher elevations and on the northern facing slopes (Knoepp and 

Swank 1998).   

 We found that two edaphic properties increased significantly with elevation across 

all elevations at both sites (p and humic matter).  However, six additional edaphic 

properties increased on Unaka Mountain (cation exchange capacity, Mg, ZnAl, N, and Ca).  

Several of these factors are generally though to influence distributions of fungi. Broader 

scale investigations would enhance our ability to interpret how these changes are 
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generalized across the region and better understand how they may be coupled with ErM 

community structure.  

We found that on both mountains root colonization increases with elevation.  

Climatically an increase in elevation is analogous to an increase in latitude in that both 

produce a decrease in temperature.  The difference in elevation shows climactic differences 

in a drastically smaller area compared to a change in latitude.  In another study, abundance 

of Ericoid mycorrhizae in Vaccinium roots increased with increasing elevation (Väre et al. 

1997).  Similarly, on McBride’s peak in east central British Columbia colonization tended to 

be slightly higher on alpine and mid-elevation transects than subalpine and low elevation 

transects, although the differences were not significant (Gorzelak et al. 2012).  At higher 

elevations or higher latitudes where temperatures are cooler and microbial decomposition 

is slower there are less available nutrients in the soil because they are bound to organic 

substrates (Väre et al. 1997).  At lower elevations nutrients are in soluble form and more 

easily taken up by plants.  Plants are less likely to form extensive mycorrhizal relationships if 

the plant can access nutrients on their own because of the tradeoff of carbohydrates to 

maintain the symbiosis.  One experiment showed that colonization decreases with 

increased levels of ammonium nitrate applied to Calluna vulgaris (Johansson 2000).  Based 

on our results and these congruent results from other studies, we conclude that at high 

elevation areas where nutrients are bound in organic sources the plant likely relies on the 

fungal symbiont to gain access to the nutrients and readily forms a symbiosis.  Studies have 

show an increase in nitrogen with elevation above 1700 m (Shubzda et al. 1995, Pauley et 

al. 1996, Barker et al. 2002).  Our data does not show a significant difference in nitrogen at 



  41 

 

any elevation on Hawksbill Mountain and a decrease in nitrogen on Unaka Mountain.  It is 

possible that in our field sites locate between 700 and 1400 m nitrogen deposition is not at 

prevalent.  However, our data does not distinguish organic and inorganic sources of N 

directly, and it is unclear what role N deposition at high elevations might have at the study 

sights.  Additional research is needed in this area.   

 The majority of taxa discovered were in the order Helotiales, which are 

Ascomycetes.  Various lineages within Helotiales have been commonly identified as 

symbionts of plants in the family Ericaceae.  A few taxa cultured in this study were in the 

order Agaricales which are Basidiomycetes, which are not as common ericoid symbionts 

especially in cultured samples.  Two of these taxa placed in the family Russulaceae are 

known to be strictly mycorrhizal but normally form ectomycorrhizal associations with other 

trees, with an exception found with another ericoid plant, Monotropa spp. which is parasitic 

on ectomycorrhizal symbioses (Bidartondo and Bruns 2002).  One other Agaricales culture,  

sp. (in Tricholomatacea) may share these role, being commonly known as ectomycorrhizal 

with the exception of possible association with Monotropa spp. It would be a novel result 

for them to form ErM associations, and future experiments should explore this potential 

ability using resynthesis methods.  The last Agaricales member was placed in the 

Mycenaceae, which are commonly observed as saprobes.  Taxa in the order Xylariales were 

found and are also commonly observed as saprobes.  Most ericoid mycorrhizal fungi are 

hypothesized to have evolved separately from other mycorrhizal fungal forms in numerous 

disparate lineages with varying saprobic capacity throughout the Ascomycetes and 

Basidiomycetes.  Ericoid plants obtain nutrients such as N from organic sources that are 
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provided by associated fungi.  Forming a symbiosis with fungi with strong saprobic capacity 

is advantageous to the plant and may become more important at higher elevation where 

organic matter accumulates and mineralization is slow.  Frequency and abundance show 

how the presence of each taxon changes with elevation.  Two of the most abundant taxa on 

Hawksbill Mountain (Cryptosporiopsis ericae1 and C.  diversispora) were seen to shift 

inversely to each other across elevations.  This is a possibly the result of specificity of each 

fungus for the different environments at each elevation.  The same dynamic was observed 

at Unaka Mountain in the two most abundant taxa’s (Dermea acerina and Neonectria 

radicicola).  On both mountains rare species were more abundant at the low rather than the 

high elevation.  Overall, Unaka Mountain had a more even distribution of taxa over all 

transects with less rare species (two or less representative cultures).  High elevations may 

have an affinity to more specialized fungal symbionts that tolerate arid and colder 

environments.   

 Indicator analysis identified five significant indicator species on Unaka Mountain and 

two indicator species on Hawksbill Mountain.  Unaka showed a greater separation in 

edaphic properties by elevation and had the greatest elevational range.  The greater 

heterogeneity of soil nutrients among elevations could have led to the greater individuality 

of the fungal assemblages at each elevation reflected by more indicator species being 

present.  For overall richness, Hawksbill Mountain had nine more species total.  Community 

structure had more taxa overlapping among the three elevations compared to the Unaka 

Mountain location. 
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 Principal components analysis separated all three elevations for both sites into 

distinct groups.  The groups were calculated by the presence of fungal taxa at each 

elevation.  Unaka showed a clearer separation between all three sites with just a little 

overlap of the high elevation and the low elevation sites with the middle site but not with 

each other. Hawksbill groupings showed the same pattern but groups were not as well 

separated as seen for Unaka Mountain.  Canonical correspondence analysis included soil 

conditions along with frequency and abundance of individual taxa at each site.  This analysis 

gives a more complete picture of how the edaphic properties measured in this study 

correspond with the changes seen in community structure.  A higher percent of variation 

explained (34%) at Unaka Mountain compared to Hawksbill (25%) is possibly a result of 

more significant changes in edaphic properties along the elevational gradient on Unaka 

than Hawksbill.  As seen in the PCA analysis which explained a much higher amount of the 

variation in the fungal assemblages, the boundaries made from the placement of each plot 

for the three elevations show distinct separation.  The groupings of plots for each transect 

are spread along a gradient on axis one but a little overlap is present for all three elevations 

for Hawksbill Mountain.  Transects were largely separated on the first axis for Unaka and 

the middle elevation grouping of plots only overlapped slightly with the high elevation plots.  

The low elevation plots did not overlap at all with either of the other two transects.  Taxa 

that had greater identity with a given elevation according to indicator species analysis were 

more clearly defined within the plot boundaries for each elevation on Unaka compared to 

Hawksbill.  The overall picture at both sites indicates that the community structure seems to 

be tracking elevation with more distinctly different high and low elevation groups and a 
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transitional middle elevation group.  Further research is needed to test the hypothesis 

whether or not the valley effect is the significant difference in the results found between 

these two sites.  We need to see if this pattern occurs in other gorges compared to other 

mountains that are more free standing.   

 The evidence found in this study supports the hypothesis that the diversity of ericoid 

mycorrhizae does shift over an elevational gradient along with corresponding shifts in 

edaphic properties.  We hypothesized that different ErM taxa respond differently to 

different environmental stresses.  One of these stresses would be to obtain nutrients from 

recalcitrant organic sources particularly at high elevation.  Therefore, we expected to see 

mycorrhizae with the ability to breakdown lignin more so at the higher elevations.  Some of 

the fungi did break down lignin but we did not find any significant results showing that 

lignin degrading mycorrhizal fungi were found more in more organic soils.  More research is 

needed to see if these fungi have higher capacities to break down lignin using a quantitative 

assay.  We can then see if a fungus with a higher capacity correlates to areas with higher 

organic matter.  

 White rot basidiomycetes have been clearly shown to have the ability to breakdown 

poly-aromatic hydrocarbons (PAH’s) with lignin degrading enzymes (Chupungars et al. 

2009).  We have shown with a qualitative assay that ericoid mycorrhizal fungi do possess 

the same lignin degrading enzymes.  After quantifying and comparing their ability to white 

rot basidiomycetes, we could potentially develop a new system for bioremediation in 

breaking down environmental contaminant PAH’s.  If ericoid mycorrhizal fungi can as 

efficiently breakdown PAH’s their partnership could potentially function as a self-sustained 
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system to ameliorate contaminated sites with the phytobiont as a carbon source.  We did 

not find any significant difference in the capability for degrading lignin by where fungi are 

located among elevations.  However, a future study will quantify the rate of degradation for 

each taxon.  By quantification we can see if the fungal symbionts with better lignin 

degrading activity are specific to different environments.  We will also be able to compare 

activity to know saprobes already used in bioremediation and have a better idea of the 

efficacy of using this symbiosis in future bioremediation studies.  

Colonization was shown to increase at both sites at higher elevations. Differences in 

edaphic properties were observed across the elevational gradient, and these changes 

coincided with changes in the fungal community structure.  Changes in 

abundance,  frequency and species composition of the fungal communities tracked 

elevational differences at the two locations tested in this research. Differences in species 

composition at Unaka Mountain were clearer, showing separation of fungal communities by 

elevation. The communities on Hawksbill Mountain were not as distinct at each elevation, 

possibly because of a valley effect causing cold temperatures to settle in the gorge which 

can change microbial metabolism. Lignin degrading capacity was found in approximately 

half of the fungal taxa but was not linked to elevational changes in fungal community 

composition.  Future directions for this research include greater sampling of the fungal 

communities at additional sites, experimental approaches to explore the relationships 

between edaphic factors and community composition, and greater characterization of the 

lignin degrading ability of the fungi. 
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